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• Leader based BFT(LBFT) lacks scalability

Background

Throughput of LBFT protocols drops from 120K tps (transaction per second) 

with 4 replicas to 20K tps with 64 replicas



• Leader bottleneck

• A key scalability challenge for Leader based BFT (LBFT)

• Proposing and commit are handled by leader

Background



1) Proposing phase

• Leader : Forms a proposal and broadcasts it to the other replicas

• Replicas : Verify the proposal

2) Commit phase

• Leader : Checks whether all correct replicas have committed to the same proposal

Background

Permissioned Network



• Decouples transaction distribution from consensus

1) Transaction data is disseminated among replicas

• Transactions can be batched == Microblock

2) Proposals contain only transaction ids

• Proposal size can be further reduced through batching

3) Non-leader replicas reconstruct the proposal pulling txs from their local mempool

• If there is missing transaction, they fetch it from other replicas (defined by shared mempool protocol)

• Independent from the consensus algorithm

• Ensuring transaction availability is the role of the shared mempool

Shared Mempool Abstraction



1) Upon receiving a new tx from the network, a replica adds tx into the mempool

2) Replica broadcasts tx if tx is from a client

3) Leader replica obtains a proposal p from local mempool

4) Leader proposes the proposal

5) Non-leader replicas reconstruct p

6) Send committed proposals to the executor

Shared Mempool Abstraction



• MicroBlock

• Batched transaction

• Proposal

• List of the microblock ids

• Block

• Obtained by FillProposal(p)

Data structure



• Integrity of a proposal depends on the availability of referenced transactions

• Byzantine replica(R5) can only share a tx with the leader (R1) to

1) Make frequent view-change (bottleneck)

2) Make replicas fetch missing tx from the leader (bottleneck)

Challenge 1: Missing Transaction



Solution 1: PAB(Provably Available Broadcast)

• Idea

• A valid microblock requires a quorum of q signatures from replicas

• In previous example,

1) If the missing transactions have valid signatures ➔ No view change is needed

2) Fetch missing transactions from one of the q replicas ➔ Fetch request is distributed



Solution 1: PAB(Provably Available Broadcast)

• Push phase

• Leader broadcasts microblock

• Replicas send signature on ⟨PAB-Ack|m.id⟩

• Leader produce succinct proof σ from a quorum of q signatures

• e.g. q=f+1

• Recovery Phase

• Leader broadcasts proof σ

• Replicas missing the microblock fetch it

from one of the signer of σ



Decoupling

• When a replica receives a proposal p:

1) Verify all proofs included in p

1) Fail -> Trigger view change

2) Success -> Move to the commit phase

2) Pull the content of microblocks associated with p

3) Fetch missing transactions

4) Execute filled proposal (block)
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• Nodes have varying resources.

• Clients are unevenly distributed

➔ Replicas with a low workload-to-bandwidth ratio can become bottlenecks

Challenge 2: Unbalanced workload



• Busy replicas forward their load to less busy replicas (proxy)

1) A busy replica randomly samples d replicas

2) Forwards its load to the least loaded replica (proxy)

3) Proxy replica sends PAB-Proof σ back to original replica

• Proxy timeout ➔ Restart from step 1 (Re-sample)

• Optimal d=3

Solution 2: DLB(Distributed Load Balancing)

How to determine 
1) whether a replica is busy?

2) how much the replica is overloaded?



• Workload Estimation: ST(Stable Time)

• Duration from microblock broadcast to stabilization (Stabilization time – broadcast time)

• Stabilization : Receiving q ⟨PAB-Ack|m.id⟩

• ST for a replica == N-th percentile of ST values for microblock

• If ST > α + ε ➔ busy! ➔ Forward excess load

• Choose a replica with the lowest ST as a proxy.

Solution 2: DLB(Distributed Load Balancing)



• Stratus

• Prototyped with Bamboo

• Open-source project for prototyping, evaluating, benchmarking BFT protocols

• PAB proof : concatenation of q ECDSA signatures

• Computation efficiency

Implementation



• Testbeds

• 4vGPU, 8GB memory, Ubuntu 20.04

• LAN and WAN simulation

• LAN

• Up to 3Gbit/s of bandwidth

• Inter-replica RTT less than 10 ms

• Metrics

• Latency: Commit time - Receive time

• Throughput: TPS(Transactions per second)

Implementation

• WAN
• Up to 100Mbit/s of bandwidth

• Inter-replica RTT less than 100 ms



• Protocols

• N- : Native version 

• SMP- : Shared mempool version (w/o PAB, DLB)

• -G : Gossip version

• -Even : Even workload

• S- : Stratus version (this paper)

• SMP-HS (?) vs S-HS ➔ PAB

• S-HS-Even(ideal) vs SMP-HS(w/o) vs SMP-HS-G(naïve) vs S-HS(DLB) ➔ DLB

Implementation



Evaluation(1) Scalability



Evaluation(1) Scalability

N-HS, N-PBFT lack of scalability



Evaluation(1) Scalability

Narwhal suffers from 

heavy broadcast primitive 



Evaluation(1) Scalability

S-PBFT & MirBFT suffers from 

higher message complexity



Evaluation(1) Scalability



• (1) Byzantine sender scenario

• Make missing transactions in leader’s proposal

• SMP-HS

• Byzantine replicas only send microblocks to the leader

• S-HS

• Byzantine replicas send microblocks to the leader 

and (q-1) replicas

Evaluation(2) Missing transactions (PAB)



Evaluation(2) Missing transactions (PAB)



Evaluation(2) Missing transactions (PAB)

• (2) Network asynchrony

• A proposal is likely to arrive before referenced transactions

• WAN

• Network fluctuation via NetEm (for 10s, between 100ms and 300ms)



• Zipfian parameter

• d: Sampling parameter

• d=3 is the optimal

Evaluation(3) Unbalanced Workload (DLB)



• SMP(Shared Mempool Abstraction) resolves the leader bottleneck.

• Stratus is a novel SMP designed to

• Address missing tx

• Handle unbalanced workloads

• S-HS 5x to 20x higher throughput compared to N-HS

• Future work

• Extend Stratus to support multi-leader BFT protocols

Conclusion & Future work
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