
Scaling Blockchain Consensus

via a Robust Shared Mempool

2024. 09. 02

서울대 분산시스템연구실

석사과정 문보설

ICDE 2023

• Leader based BFT(LBFT) lacks scalability

Background

Throughput of LBFT protocols drops from 120K tps (transaction per second)

with 4 replicas to 20K tps with 64 replicas

• Leader bottleneck

• A key scalability challenge for Leader based BFT (LBFT)

• Proposing and commit are handled by leader

Background

1) Proposing phase

• Leader : Forms a proposal and broadcasts it to the other replicas

• Replicas : Verify the proposal

2) Commit phase

• Leader : Checks whether all correct replicas have committed to the same proposal

Background

Permissioned Network

• Decouples transaction distribution from consensus

1) Transaction data is disseminated among replicas

• Transactions can be batched == Microblock

2) Proposals contain only transaction ids

• Proposal size can be further reduced through batching

3) Non-leader replicas reconstruct the proposal pulling txs from their local mempool

• If there is missing transaction, they fetch it from other replicas (defined by shared mempool protocol)

• Independent from the consensus algorithm

• Ensuring transaction availability is the role of the shared mempool

Shared Mempool Abstraction

1) Upon receiving a new tx from the network, a replica adds tx into the mempool

2) Replica broadcasts tx if tx is from a client

3) Leader replica obtains a proposal p from local mempool

4) Leader proposes the proposal

5) Non-leader replicas reconstruct p

6) Send committed proposals to the executor

Shared Mempool Abstraction

• MicroBlock

• Batched transaction

• Proposal

• List of the microblock ids

• Block

• Obtained by FillProposal(p)

Data structure

• Integrity of a proposal depends on the availability of referenced transactions

• Byzantine replica(R5) can only share a tx with the leader (R1) to

1) Make frequent view-change (bottleneck)

2) Make replicas fetch missing tx from the leader (bottleneck)

Challenge 1: Missing Transaction

Solution 1: PAB(Provably Available Broadcast)

• Idea

• A valid microblock requires a quorum of q signatures from replicas

• In previous example,

1) If the missing transactions have valid signatures ➔ No view change is needed

2) Fetch missing transactions from one of the q replicas ➔ Fetch request is distributed

Solution 1: PAB(Provably Available Broadcast)

• Push phase

• Leader broadcasts microblock

• Replicas send signature on ⟨PAB-Ack|m.id⟩

• Leader produce succinct proof σ from a quorum of q signatures

• e.g. q=f+1

• Recovery Phase

• Leader broadcasts proof σ

• Replicas missing the microblock fetch it

from one of the signer of σ

Decoupling

• When a replica receives a proposal p:

1) Verify all proofs included in p

1) Fail -> Trigger view change

2) Success -> Move to the commit phase

2) Pull the content of microblocks associated with p

3) Fetch missing transactions

4) Execute filled proposal (block)

Decoupling

• When a replica receives a proposal p:

1) Verify all proofs included in p

1) Fail -> Trigger view change

2) Success -> Move to the commit phase

2) Pull the content of microblocks associated with p

3) Fetch missing transactions

4) Execute filled proposal (block)

• Nodes have varying resources.

• Clients are unevenly distributed

➔ Replicas with a low workload-to-bandwidth ratio can become bottlenecks

Challenge 2: Unbalanced workload

• Busy replicas forward their load to less busy replicas (proxy)

1) A busy replica randomly samples d replicas

2) Forwards its load to the least loaded replica (proxy)

3) Proxy replica sends PAB-Proof σ back to original replica

• Proxy timeout ➔ Restart from step 1 (Re-sample)

• Optimal d=3

Solution 2: DLB(Distributed Load Balancing)

How to determine
1) whether a replica is busy?

2) how much the replica is overloaded?

• Workload Estimation: ST(Stable Time)

• Duration from microblock broadcast to stabilization (Stabilization time – broadcast time)

• Stabilization : Receiving q ⟨PAB-Ack|m.id⟩

• ST for a replica == N-th percentile of ST values for microblock

• If ST > α + ε ➔ busy! ➔ Forward excess load

• Choose a replica with the lowest ST as a proxy.

Solution 2: DLB(Distributed Load Balancing)

• Stratus

• Prototyped with Bamboo

• Open-source project for prototyping, evaluating, benchmarking BFT protocols

• PAB proof : concatenation of q ECDSA signatures

• Computation efficiency

Implementation

• Testbeds

• 4vGPU, 8GB memory, Ubuntu 20.04

• LAN and WAN simulation

• LAN

• Up to 3Gbit/s of bandwidth

• Inter-replica RTT less than 10 ms

• Metrics

• Latency: Commit time - Receive time

• Throughput: TPS(Transactions per second)

Implementation

• WAN
• Up to 100Mbit/s of bandwidth

• Inter-replica RTT less than 100 ms

• Protocols

• N- : Native version

• SMP- : Shared mempool version (w/o PAB, DLB)

• -G : Gossip version

• -Even : Even workload

• S- : Stratus version (this paper)

• SMP-HS (?) vs S-HS ➔ PAB

• S-HS-Even(ideal) vs SMP-HS(w/o) vs SMP-HS-G(naïve) vs S-HS(DLB) ➔ DLB

Implementation

Evaluation(1) Scalability

Evaluation(1) Scalability

N-HS, N-PBFT lack of scalability

Evaluation(1) Scalability

Narwhal suffers from

heavy broadcast primitive

Evaluation(1) Scalability

S-PBFT & MirBFT suffers from

higher message complexity

Evaluation(1) Scalability

• (1) Byzantine sender scenario

• Make missing transactions in leader’s proposal

• SMP-HS

• Byzantine replicas only send microblocks to the leader

• S-HS

• Byzantine replicas send microblocks to the leader

and (q-1) replicas

Evaluation(2) Missing transactions (PAB)

Evaluation(2) Missing transactions (PAB)

Evaluation(2) Missing transactions (PAB)

• (2) Network asynchrony

• A proposal is likely to arrive before referenced transactions

• WAN

• Network fluctuation via NetEm (for 10s, between 100ms and 300ms)

• Zipfian parameter

• d: Sampling parameter

• d=3 is the optimal

Evaluation(3) Unbalanced Workload (DLB)

• SMP(Shared Mempool Abstraction) resolves the leader bottleneck.

• Stratus is a novel SMP designed to

• Address missing tx

• Handle unbalanced workloads

• S-HS 5x to 20x higher throughput compared to N-HS

• Future work

• Extend Stratus to support multi-leader BFT protocols

Conclusion & Future work

	Slide 1: Scaling Blockchain Consensus via a Robust Shared Mempool
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28

