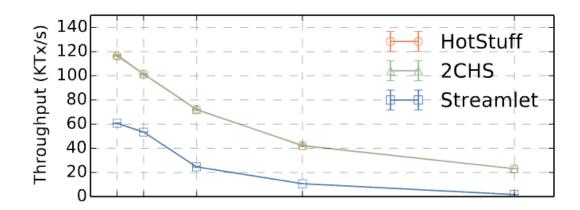


#### ICDE 2023


# Scaling Blockchain Consensus via a Robust Shared Mempool

 Fangyu Gai<sup>1,†</sup>, Jianyu Niu<sup>2,†</sup>, Ivan Beschastnikh<sup>3</sup>, Chen Feng<sup>1</sup>, Sheng Wang<sup>4</sup>
<sup>1</sup>{fangyu.gai, chen.feng}@ubc.ca <sup>2</sup>niujy@sustech.edu.cn <sup>3</sup>bestchai@cs.ubc.ca <sup>4</sup>sh.wang@alibaba-inc.com University of British Columbia (<sup>1</sup>Okanagan Campus, <sup>3</sup>Vancouver Campus)
<sup>2</sup>Southern University of Science and Technology <sup>4</sup>Alibaba Group

> 2024. 09. 02 서울대 분산시스템연구실 석사과정 문보설

# Background

• Leader based BFT(LBFT) lacks scalability



Throughput of LBFT protocols drops from 120K tps (transaction per second) with 4 replicas to 20K tps with 64 replicas



# Background

- Leader bottleneck
  - A key scalability challenge for Leader based BFT (LBFT)
  - Proposing and commit are handled by leader

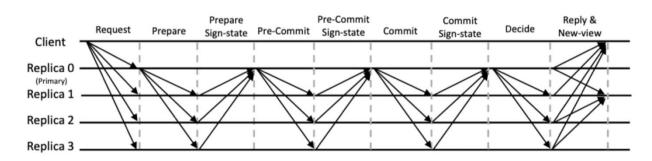



Fig. 4. The workflow of the 4-phase replication under normal operation in HotStuff.

**TABLE III:** Outbound bandwidth consumption comparison (MB/s) with N = 64 replicas. The bandwidth of each replica is throttled to 100 MB/s. The results are collected when the network is saturated.

| Role/Messages |             | N-HS | SMP-HS | S-HS (this paper) |
|---------------|-------------|------|--------|-------------------|
|               | Proposals   | 75.4 | 4.7    | 9.8               |
| Leader        | Microblocks | N/A  | 50.5   | 50.3              |
|               | SUM         | 75.4 | 55.2   | 60.1              |
|               | Microblocks | N/A  | 50.4   | 50.3              |
| Non-leader    | Votes       | 0.5  | 2.5    | 2.4               |
|               | Acks        | N/A  | N/A    | 4.7               |
|               | SUM         | 0.5  | 52.9   | 57.4              |



# Background

- 1) Proposing phase
  - Leader : Forms a proposal and broadcasts it to the other replicas
  - Replicas : Verify the proposal

#### **Permissioned Network**

- 2) Commit phase
  - Leader : Checks whether all correct replicas have committed to the same proposal

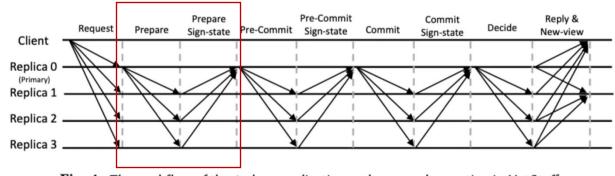



Fig. 4. The workflow of the 4-phase replication under normal operation in HotStuff.



#### **Shared Mempool Abstraction**

#### Decouples transaction distribution from consensus

- 1) Transaction data is disseminated among replicas
  - Transactions can be batched == Microblock
- 2) Proposals contain only transaction ids
  - Proposal size can be further reduced through batching
- 3) Non-leader replicas reconstruct the proposal pulling txs from their local mempool
  - If there is missing transaction, they fetch it from other replicas (defined by shared mempool protocol)
  - Independent from the consensus algorithm
  - Ensuring transaction availability is the role of the shared mempool



# **Shared Mempool Abstraction**

- 1) Upon receiving a new tx from the network, a replica adds tx into the mempool
- 2) Replica broadcasts tx if tx is from a client
- 3) Leader replica obtains a proposal p from local mempool
- 4) Leader proposes the proposal
- 5) Non-leader replicas reconstruct p
- 6) Send committed proposals to the executor

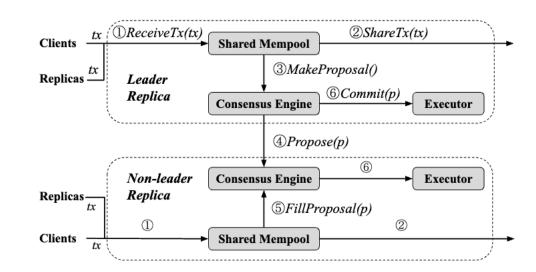
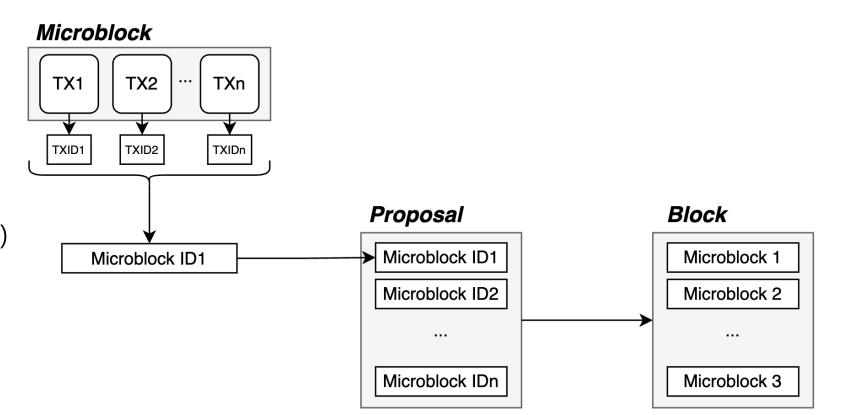




Fig. 1: The processing of transactions in state machine replication using SMP.



#### Data structure

- MicroBlock
  - Batched transaction
- Proposal
  - List of the microblock ids
- Block
  - Obtained by FillProposal(p)





## **Challenge 1: Missing Transaction**

- Integrity of a proposal depends on the availability of referenced transactions
- Byzantine replica(R5) can only share a tx with the leader (R1) to
  - 1) Make frequent view-change (bottleneck)
  - 2) Make replicas fetch missing tx from the leader (bottleneck)

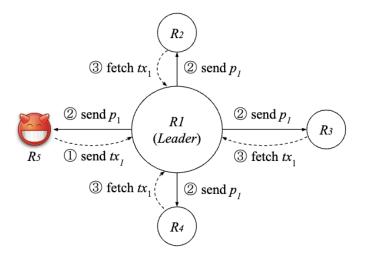


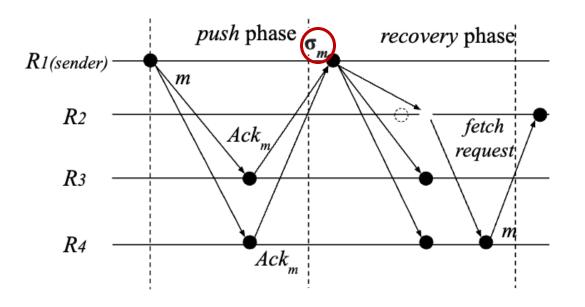

Fig. 2: In a system with SMP, consisting of 5 replicas in which  $R_5$  is Byzantine and  $R_1$  is the current leader.



## Solution 1: PAB(Provably Available Broadcast)

#### • Idea

• A valid microblock requires a quorum of q signatures from replicas


- In previous example,
  - 1) If the missing transactions have valid signatures  $\rightarrow$  No view change is needed
  - 2) Fetch missing transactions from one of the q replicas  $\rightarrow$  Fetch request is distributed



## Solution 1: PAB(Provably Available Broadcast)

#### Push phase

- Leader broadcasts microblock
- Replicas send signature on (PAB-Ack|m.id)
- Leader produce succinct proof  $\sigma$  from a quorum of q signatures
- e.g. q=f+1
- Recovery Phase
  - Leader broadcasts proof  $\boldsymbol{\sigma}$
  - Replicas missing the microblock fetch it from one of the signer of  $\boldsymbol{\sigma}$





# Decoupling

- When a replica receives a proposal p:
- 1) Verify all proofs included in p
  - 1) Fail -> Trigger view change
  - 2) Success -> Move to the commit phase
- 2) Pull the content of microblocks associated with p
- 3) Fetch missing transactions
- 4) Execute filled proposal (block)



# Decoupling

- When a replica receives a proposal p:
- 1) Verify all proofs included in p
  - 1) Fail -> Trigger view change
  - 2) Success -> Move to the commit phase
- 2) Pull the content of microblocks associated with p
- 3) Fetch missing transactions
- 4) Execute filled proposal (block)



# Challenge 2: Unbalanced workload

- Nodes have varying resources.
- Clients are unevenly distributed

→ Replicas with a low workload-to-bandwidth ratio can become bottlenecks



# Solution 2: DLB(Distributed Load Balancing)

- Busy replicas forward their load to less busy replicas (proxy)
  - 1) A busy replica randomly **samples d replicas**
  - 2) Forwards its load to the least loaded replica (proxy)
  - 3) Proxy replica sends PAB-Proof  $\sigma$  back to original replica
- Proxy timeout → Restart from step 1 (Re-sample)
- Optimal d=3

#### How to determine

- 1) whether a replica is busy?
- 2) how much the replica is overloaded?



#### Solution 2: DLB(Distributed Load Balancing)

- Workload Estimation: ST(Stable Time)
  - Duration from microblock **broadcast** to **stabilization** (Stabilization time broadcast time)
  - Stabilization : Receiving q (PAB-Ack|m.id)

- ST for a replica == N-th percentile of ST values for microblock
  - If ST >  $\alpha$  +  $\epsilon$   $\rightarrow$  busy!  $\rightarrow$  Forward excess load
  - Choose a replica with the lowest ST as a proxy.



#### Implementation

#### Stratus

- Prototyped with Bamboo
  - Open-source project for prototyping, evaluating, benchmarking BFT protocols

Dissecting the Performance of Chained-BFT

Fangyu Gai\*, Ali Farahbakhsh\*, Jianyu Niu\*, Chen Feng\*, Ivan Beschastnikh<sup>†</sup>, Hao Duan<sup>‡</sup> University of British Columbia (\*Okanagan Campus, <sup>†</sup>Vancouver Campus) <sup>‡</sup>Hangzhou Qulian Technology Co., Ltd.

- PAB proof : concatenation of q ECDSA signatures
  - Computation efficiency



#### Implementation

#### Testbeds

- 4vGPU, 8GB memory, Ubuntu 20.04
- LAN and WAN simulation
- LAN
  - Up to 3Gbit/s of bandwidth
  - Inter-replica RTT less than 10 ms

- WAN
  - Up to 100Mbit/s of bandwidth
  - Inter-replica RTT less than 100 ms

#### Metrics

- Latency: Commit time Receive time
- Throughput: TPS(Transactions per second)



#### Implementation

#### • Protocols

- N- : Native version
- SMP- : Shared mempool version (w/o PAB, DLB)
- -G : Gossip version
- -Even : Even workload
- S-: Stratus version (this paper)

TABLE II: Summary of evaluated protocols.

| Acronym     | Protocol description                             |
|-------------|--------------------------------------------------|
| N-HS        | Native HotStuff without a shared mempool         |
| N-PBFT      | Native PBFT without a shared mempool             |
| SMP-HS      | HotStuff integrated with a simple shared mempool |
| SMP-HS-G    | SMP-HS with gossip instead of broadcast          |
| SMP-HS-Even | SMP-HS with an even workload across replicas     |
| S-HS        | HotStuff integrated with Stratus (this paper)    |
| S-PBFT      | PBFT integrated with Stratus (this paper)        |
| Narwhal     | HotStuff based shared mempool                    |
| MirBFT      | PBFT based multi-leader protocol                 |

- SMP-HS (?) vs S-HS → PAB
- S-HS-Even(ideal) vs SMP-HS(w/o) vs SMP-HS-G(naïve) vs S-HS(DLB) → DLB



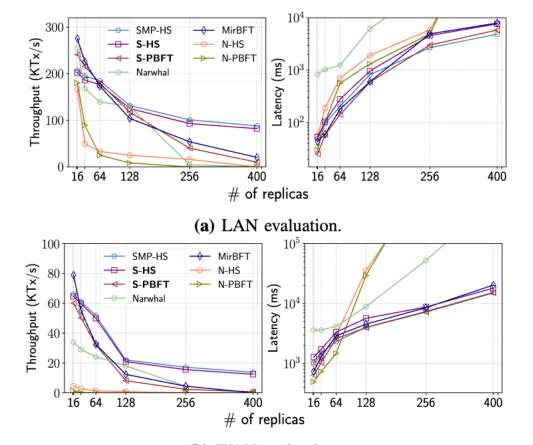



TABLE II: Summary of evaluated protocols.

|             | · · · · · · · · · · · · · · · · · · ·            |
|-------------|--------------------------------------------------|
| Acronym     | Protocol description                             |
| N-HS        | Native HotStuff without a shared mempool         |
| N-PBFT      | Native PBFT without a shared mempool             |
| SMP-HS      | HotStuff integrated with a simple shared mempool |
| SMP-HS-G    | SMP-HS with gossip instead of broadcast          |
| SMP-HS-Even | SMP-HS with an even workload across replicas     |
| S-HS        | HotStuff integrated with Stratus (this paper)    |
| S-PBFT      | PBFT integrated with Stratus (this paper)        |
| Narwhal     | HotStuff based shared mempool                    |
| MirBFT      | PBFT based multi-leader protocol                 |

(b) WAN evaluation. Fig. 5: The throughput (left) and latency (right) of protocols in both LAN and WAN with increasing number of replicas. We use 128-byte payload and 128KB batch size.



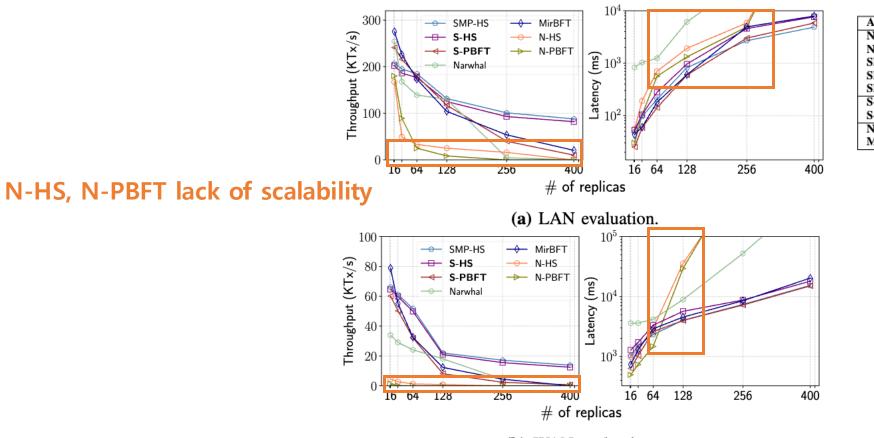
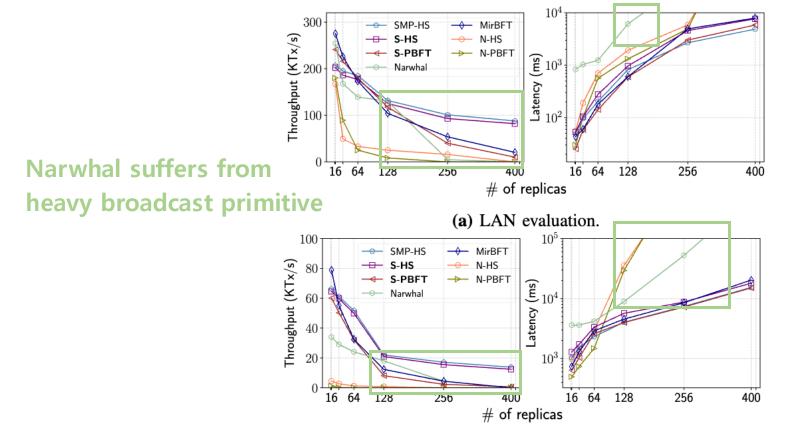




TABLE II: Summary of evaluated protocols.

| Acronym     | Protocol description                             |
|-------------|--------------------------------------------------|
| N-HS        | Native HotStuff without a shared mempool         |
| N-PBFT      | Native PBFT without a shared mempool             |
| SMP-HS      | HotStuff integrated with a simple shared mempool |
| SMP-HS-G    | SMP-HS with gossip instead of broadcast          |
| SMP-HS-Even | SMP-HS with an even workload across replicas     |
| S-HS        | HotStuff integrated with Stratus (this paper)    |
| S-PBFT      | PBFT integrated with Stratus (this paper)        |
| Narwhal     | HotStuff based shared mempool                    |
| MirBFT      | PBFT based multi-leader protocol                 |

(b) WAN evaluation. **Fig. 5:** The throughput (left) and latency (right) of protocols in both LAN and WAN with increasing number of replicas. We use 128-byte payload and 128KB batch size.





(b) WAN evaluation. **Fig. 5:** The throughput (left) and latency (right) of protocols in both LAN and WAN with increasing number of replicas. We use 128-byte payload and 128KB batch size.

#### TABLE II: Summary of evaluated protocols.

|             | · ·                                              |
|-------------|--------------------------------------------------|
| Acronym     | Protocol description                             |
| N-HS        | Native HotStuff without a shared mempool         |
| N-PBFT      | Native PBFT without a shared mempool             |
| SMP-HS      | HotStuff integrated with a simple shared mempool |
| SMP-HS-G    | SMP-HS with gossip instead of broadcast          |
| SMP-HS-Even | SMP-HS with an even workload across replicas     |
| S-HS        | HotStuff integrated with Stratus (this paper)    |
| S-PBFT      | PBFT integrated with Stratus (this paper)        |
| Narwhal     | HotStuff based shared mempool                    |
| MirBFT      | PBFT based multi-leader protocol                 |



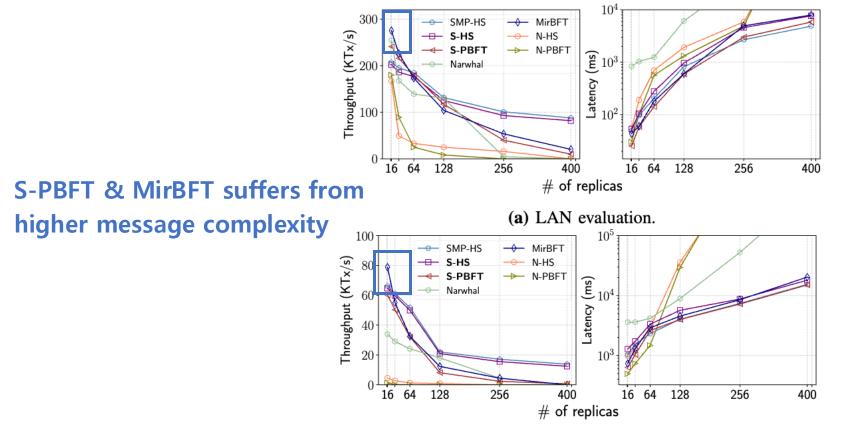



TABLE II: Summary of evaluated protocols.

| Acronym     | Protocol description                             |
|-------------|--------------------------------------------------|
| N-HS        | Native HotStuff without a shared mempool         |
| N-PBFT      | Native PBFT without a shared mempool             |
| SMP-HS      | HotStuff integrated with a simple shared mempool |
| SMP-HS-G    | SMP-HS with gossip instead of broadcast          |
| SMP-HS-Even | SMP-HS with an even workload across replicas     |
| S-HS        | HotStuff integrated with Stratus (this paper)    |
| S-PBFT      | PBFT integrated with Stratus (this paper)        |
| Narwhal     | HotStuff based shared mempool                    |
| MirBFT      | PBFT based multi-leader protocol                 |

(b) WAN evaluation. **Fig. 5:** The throughput (left) and latency (right) of protocols in both LAN and WAN with increasing number of replicas. We use 128-byte payload and 128KB batch size.



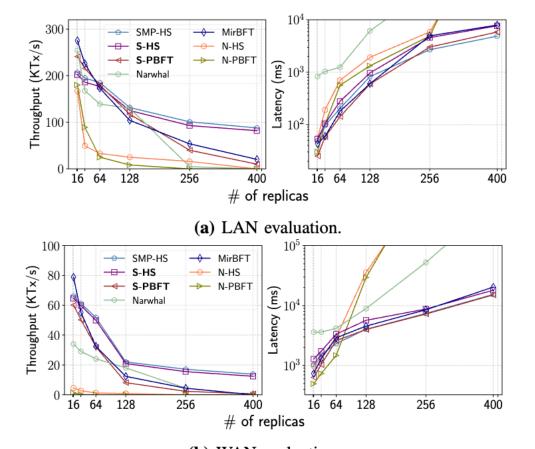
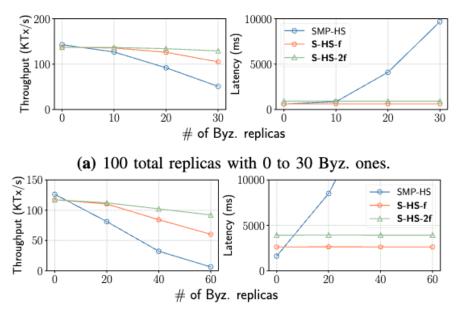



TABLE II: Summary of evaluated protocols.


|             | <i>v</i> 1                                       |
|-------------|--------------------------------------------------|
| Acronym     | Protocol description                             |
| N-HS        | Native HotStuff without a shared mempool         |
| N-PBFT      | Native PBFT without a shared mempool             |
| SMP-HS      | HotStuff integrated with a simple shared mempool |
| SMP-HS-G    | SMP-HS with gossip instead of broadcast          |
| SMP-HS-Even | SMP-HS with an even workload across replicas     |
| S-HS        | HotStuff integrated with Stratus (this paper)    |
| S-PBFT      | PBFT integrated with Stratus (this paper)        |
| Narwhal     | HotStuff based shared mempool                    |
| MirBFT      | PBFT based multi-leader protocol                 |

(b) WAN evaluation. **Fig. 5:** The throughput (left) and latency (right) of protocols in both LAN and WAN with increasing number of replicas. We use 128-byte payload and 128KB batch size.



## **Evaluation(2) Missing transactions (PAB)**

- (1) Byzantine sender scenario
  - Make missing transactions in leader's proposal
  - SMP-HS
    - Byzantine replicas only send microblocks to the leader
  - S-HS
    - Byzantine replicas send microblocks to the leader and (q-1) replicas



(b) 200 total replicas with 0 to 60 Byz. ones.

Fig. 7: Performance of SMP-HS and S-HS with different quorum parameters (S-HS-d1 and S-HS-d2) and increasing Byzantine replicas.



#### **Evaluation(2)** Missing transactions (PAB)

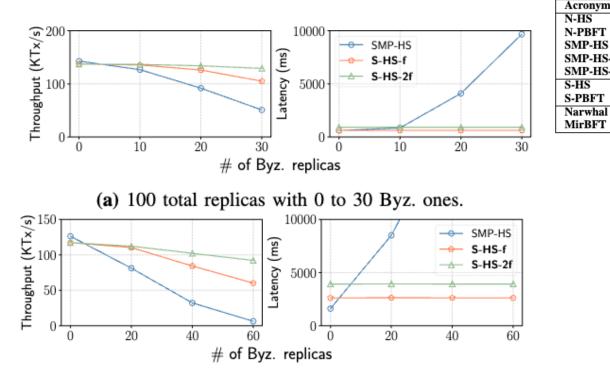



TABLE II: Summary of evaluated protocols.

Native HotStuff without a shared mempool

HotStuff integrated with a simple shared mempool

SMP-HS with an even workload across replicas

HotStuff integrated with Stratus (this paper) PBFT integrated with Stratus (this paper)

Native PBFT without a shared mempool

SMP-HS with gossip instead of broadcast

HotStuff based shared mempool

PBFT based multi-leader protocol

Protocol description

Acronym

N-PBFT

SMP-HS

MirBFT

SMP-HS-G

SMP-HS-Even

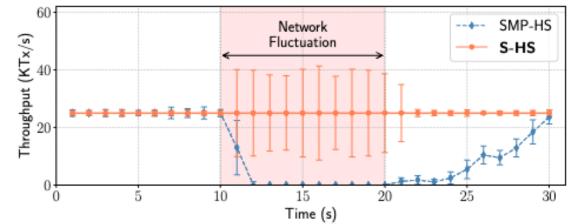

(b) 200 total replicas with 0 to 60 Byz. ones.

Fig. 7: Performance of SMP-HS and S-HS with different quorum parameters (S-HS-d1 and S-HS-d2) and increasing Byzantine replicas.



# **Evaluation(2) Missing transactions (PAB)**

- (2) Network asynchrony
  - A proposal is likely to arrive before referenced transactions
  - WAN
  - Network fluctuation via NetEm (for 10s, between 100ms and 300ms)



| TABLE II: Summary | of | evaluated | protocols. |
|-------------------|----|-----------|------------|
|-------------------|----|-----------|------------|

| Acronym     | Protocol description                             |
|-------------|--------------------------------------------------|
| N-HS        | Native HotStuff without a shared mempool         |
| N-PBFT      | Native PBFT without a shared mempool             |
| SMP-HS      | HotStuff integrated with a simple shared mempool |
| SMP-HS-G    | SMP-HS with gossip instead of broadcast          |
| SMP-HS-Even | SMP-HS with an even workload across replicas     |
| S-HS        | HotStuff integrated with Stratus (this paper)    |
| S-PBFT      | PBFT integrated with Stratus (this paper)        |
| Narwhal     | HotStuff based shared mempool                    |
| MirBFT      | PBFT based multi-leader protocol                 |

Fig. 6: Delay is injected at time 10 s and lasts for 10 s. The transaction rate is 25KTx/s. Each point is averaged over 10 runs.



# Evaluation(3) Unbalanced Workload (DLB)

- Zipfian parameter
- d: Sampling parameter
  - d=3 is the optimal

TABLE II: Summary of evaluated protocols.

| Acronym     | Protocol description                             |
|-------------|--------------------------------------------------|
| N-HS        | Native HotStuff without a shared mempool         |
| N-PBFT      | Native PBFT without a shared mempool             |
| SMP-HS      | HotStuff integrated with a simple shared mempool |
| SMP-HS-G    | SMP-HS with gossip instead of broadcast          |
| SMP-HS-Even | SMP-HS with an even workload across replicas     |
| S-HS        | HotStuff integrated with Stratus (this paper)    |
| S-PBFT      | PBFT integrated with Stratus (this paper)        |
| Narwhal     | HotStuff based shared mempool                    |
| MirBFT      | PBFT based multi-leader protocol                 |

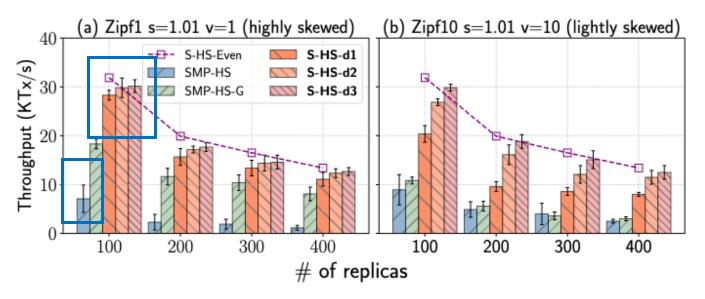



Fig. 9: Throughput with different workload distribution.



#### **Conclusion & Future work**

- SMP(Shared Mempool Abstraction) resolves the leader bottleneck.
- Stratus is a novel SMP designed to
  - Address missing tx
  - Handle unbalanced workloads
- S-HS 5x to 20x higher throughput compared to N-HS

- Future work
  - Extend Stratus to support multi-leader BFT protocols

