IR

£9
¥ e
R -

[3JCSLAB

ZKSQL: Verifiable and Efficient

Query Evaluation with Zero-Knowledge Proofs

VLDB ’23

Xiling Li Chenkai Weng Yongxin Xu
Northwestern University Northwestern University Northwestern University
xiling li@northwestern.edu ckweng@u.northwestern.edu yongxinxu2022@u.northwestern.edu

Xiao Wang Jennie Rogers
Northwestern University Northwestern University
wangxiao@northwestern.edu jennie@northwestern.edu

2024. 07. 18
PELERINEN T RY

Mt 224

Motivation

« Motivation 1: Data providers could forge the data

* Motivating example U.S. News Dropped Columbia’s
Ranking, but Its Own Methods Are

Now Questioned

After doubt about its data, the university dropped to No. 18 from
No. 2. But now many are asking, can the rating system be that

easily manipulated?

« DoE cannot verify statistics provided by universities with conventional DBMS

[BICcSLAB

Motivation

« Motivation 1: Data providers could forge the data

 Motivating example U.S. News Dropped Columbia’s
Ranking, but Its Own Methods Are
Now Questioned

After doubt about its data, the university dropped to No. 18 from
No. 2. But now many are asking, can the rating system be that

easily manipulated?

« DoE cannot verify statistics provided by universities with conventional DBMS

« Motivation 2: Data owners don't want to reveal private information

[BICcSLAB

Motivation

« Motivation 1: Data providers could forge the data

* Motivating example U.S. News Dropped Columbia’s
Ranking, but Its Own Methods Are
Now Questioned

After doubt about its data, the university dropped to No. 18 from
No. 2. But now many are asking, can the rating system be that

easily manipulated?

« DoE cannot verify statistics provided by universities with conventional DBMS

« Motivation 2: Data owners don't want to reveal private information

How can users access reliable statistics
without compromising privacy?

— Verifiable, Privacy-preserving Querying

[BICcSLAB

ZKSQL: Zero-knowledge proofs over SQL

« Goal

« Construct authenticated query answer without divulging private input data

Prvate

- Quen/ .

— Answer +é;P\, RN
W,

Ve,r‘ipl{ —> Accep‘t

Verifier Prover

[BICcSLAB

ZKSQL: Zero-knowledge proofs over SQL

« Contributions

» First work for ad-hoc SQL queries with ZKP
« Set-based protocols for optimization (faster than the baseline*)
« Experimental results on TPC-H benchmark demonstrate ZKSQL's speedup of up to

two orders of magnitude over the baseline*

*Baseline : Circuit-only implementation

[BICcSLAB

Preliminaries

« Zero-knowledge proof

» The prover P convinces the verifier V that the statement is true without revealing
any additional information

« The statement: Prover's result from some computation are correct and complete

[BICcSLAB

Preliminaries

« Zero-knowledge proof

» The prover P convinces the verifier V that the statement is true without revealing
any additional information

« The statement: Prover's result from some computation are correct and complete

Statement : Bob is not blinded
Secret : Color of the ball

Cr

Bob

Alice

Verifier Prover

1) BcsLAB

Preliminaries

« Zero-knowledge proof

» The prover P convinces the verifier V that the statement is true without revealing
any additional information

« The statement: Prover's result from some computation are correct and complete

Bob

Alice

Verifier Prover

[BICcSLAB

Preliminaries

« Zero-knowledge proof

» The prover P convinces the verifier V that the statement is true without revealing
any additional information

« The statement: Prover's result from some computation are correct and complete

Bob

Alice

Verifier Prover

[BICcSLAB

Preliminaries

« Commit and Prove ZK

« Commitment : hide and bind the original data

« Verifier can confirm that the answer is calculated over the data committed before

Commit and Prove ZK

1, Commitment ‘+
2. Proof [} —=>

N B

./

il
v

1) BcsLAB

ZKP in Query Evaluation

« Workflow

» 1) Setup : The engine sets up the commitments over which we will evaluate our

zero-knowledge proof, [D] - (fig (a))
« 2) Proof generation & Verification : P and V interactively verify the answer to
one or more SQL queries with respect to [D] - (fig (b))

(3))
= Query Q
» RN B — > & C=([A][A])
S — - Query answer =
[[D1,, ’ [D],, (A, C=([A'] [A])) '
— — Prover (3) Verifier
— | o=a,,)
Authenticated [A] = Co((D]) M [A] = Co(ID])
N - DB [D] - ——— —— (&)
)] D], < SQlL-over-ZKP > D], '
Prover Commitment | Verifier 3 (2) L= |
I Protocol ()
— — E\ [1 Evaluate Verify .
S— () b v o e
Database D & P | Aa=QD) C=([A'LIA]) = 1
(a) Private database commitment. (b) Authenticated querying over ZK proofs.

[BICcSLAB

Setup

« Setup

 Generate commitment [D] for Database D

« V can confirm multiple query answers refer to the same dataset D

o1, g = N
« Workflow LIy /Jo‘; 1_7_\
1) Step 1: P input its private database D to commitment protoco@'P&H Hl?h

2) Step 2: P and V generate the tags one for each bit in D - .

3) Step 3: P holds [D]p, V holds [D], and authentication K€y Ay) private database commitment.

« The relationship of [D]p and [D]y: [D]p = [D]y + D - Ay

[BICcSLAB

Query Evaluation

« Workflow

1) V sends a SQL statement over the D
2) ZKSQL parses the SQL into DAG of ZKSQL operators

3) P and V make commitment of the output

4) Verify the correctness of input and evaluation with each operator in DAG

[BICcSLAB

Query Evaluation

« Workflow

1) V sends a SQL statement over the D
2) ZKSQL parses the SQL into DAG of ZKSQL operators

3) P and V make commitment of the output
4) Verify the correctness of input and evaluation with each operator in DAG

/’\\

[D1IwID2dv - [RI«Delta (
= [D1JpLDade - (MHIDIJp + DasIdadp - [RIVDelta \jm /
[R1_v A\
__!
(// Join |:
ﬁ TR
[ni_v)| b2l v |
D D O
| Scan) | Scan) (Scan /)
\H__ Y N L

[BICcSLAB

Set-based optimization

* Idea: Decoupling operator evaluation from proving
« Circuit proves the correctness of evaluation process (Expansive)

— We need correctness of the resu

pragma circom 2.0.0;

Sort4() {
values[4];
sorted(4];

selectors([4] [4];
min[4];
isUsed[4];

for (i=0; 1<4; i++) {
isUsed[i] <-—- ©;

for (i=0; 1i<4; i++) {
for i=0;] <4; j++
selectors[il [j] = IsZero();

selectors[il [j]l.in[®] <== isUsed[j];
selectors[i] [j]1.in[1] <== values[j] - min[i].out;

min[i] = Min(4);
for i=0;] <4; j++
min[il.in[j] <== selectors[il[jl.out * values[j] + (1 - selectors[il [j].out) * 99999;

j=0; j <4; j++
isUsed[j] <== isUsed[j] + selectors[il [j].out;
require(isUsed[j] <= 1);

sorted[i] <== min[i].out;

[1} = Sort4();

[BICcSLAB

Set-based operator

- Example: Sort
« P computes intermediate result by local computation(sort) on plaintext, T
 Circuit checks if the adjacent ones in T satisfy the sort definition (Ti <O{)1)

« Set equality operation checks if [T] contains exactly same rows as input of so@{n)
[R]

[BICcSLAB

Set-based operator

- Equality

« Strawman
* n: # of tuples in table R and S
1) Circuit sort Rand S

2) Compare each tuples in Rand S

O(nlogn)
Computation and
Communication

[#8) BIcsLAB

Set-based operator

- Equality

* Polynomial Identity Testing
* n: # of tuples in table R and S
1) V samples a uniform @ « F,12s and send it to P

2) P and V compute and open the value (r;: tuple from R, s;: tuple from S)

n:l:l([ri] —a) — n:l:l([si] —a) =0

« If R 1='S, probability to pass test p < n/21%8

O(n)
Computation and
Communication

[BICcSLAB

Set-based operator

- Example: Join

» Circuit checks confirms that tuples in result T satisfies the join criteria

« Set difference proves that no spurious tuples are added to T

 Disjoint proves that no rows are omitted from T

[BICcSLAB

Set-based operator

« Set difference
« 1) Pand V commit [R — T] = [Ag]
« 2) Set difference checks (Equality, [Ag]||[T],[R])

« 3) Compute same proof on [S], [As]

* Disjoint
* 1) P and V evaluate [Kr] = (Project,[Ag],R) and [K]
« 2) Disjoint checks (Equality, [Kg]||[KI|[T], [R]||[S])

[BICcSLAB

Experimental results

- Experiment Setting
« ZK circuit: EMP-toolkit
« Backend Database: PostgreSQL

« Database size: 60k, 120k, 240k rows
« 16vCPU, 128GiB
 Testset

e Subset of TPC-H benchmark
« Q1, Q3, Q5 Q8, Q9 Q18

[#8) BIcsLAB

Experimental results

105 B I IZKSQLI .Circuit-()nly
@ -
£ 10t
-g -
= 3L
& 10 -
10% = .L

|
Q1 Q3 Q5 Q8 Q9 Q18

Figure 9: Runtime of ZKSQL vs Circuit-Only baseline.

 Authenticated query answer generation time over 60k rows

 Average x100 improvement

1) BcsLAB

Experimental results

Few set-based operations Many set-based operations

\ No filter & projection

105 = \ I I ZKSQLI l Circuit-Only

Runtime(s)
=
T
[T

—
(=}

w
TTTTT

Q1

Q18

— Proving set operation is more efficient than circuit evaluation

1) BcsLAB

Experimental results

l . 12.5Gbps D D 20Mbps l . 5Mbps

0
(=]
=1
(=]

1,000

Runtime(s)

0
01 03 Q5 08 Q9 Q18

Figure 11: Runtime with decreasing network speeds.

* No bottleneck until 5Mbps

« Reducing the bandwidth to 5Mbps — only X2 slower

[#8) BIcsLAB

	Slide 1: ZKSQL: Verifiable and Efficient Query Evaluation with Zero-Knowledge Proofs
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 19
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29

