
Lutris: A Blockchain Combining Broadcast and Consensus
CCS 24

2024. 11. 25

서울대 분산시스템연구실

석사과정 문보설



Mysten Labs

• Zef: Low-latency, Scalable, Private Payments

• Twins: BFT Systems Made Robust (OPODIS ‘21)

• SybilQuorum: Open Distributed Ledgers Through Trust Networks

• Narwhal and Tusk: A DAG-based Mempool and Efficient BFT Consensus (EuroSys ‘22)

• HammerHead: Score-based Dynamic Leader Selection (ICDCS ‘24)

• FastPay: High-Performance Byzantine Fault Tolerant Settlement (AFT ‘20)

• Bullshark: DAG BFT Protocols Made Practical

• Be Aware of Your Leaders (FC ‘22)

• zkLogin: Privacy-Preserving Blockchain Authentication with Existing Credentials

• Sui Lutris: A Blockchain Combining Broadcast and Consensus (CCS ‘24)

• Mysticeti: Reaching the Limits of Latency with Uncertified DAGs (NDSS ‘25)

• Mahi-Mahi: Low-Latency Asynchronous BFT DAG-Based Consensus



Double Spending and Consensus 1. Motivation



• Consensus-less blockchain (Zef(WPES ‘23), FastPay(AFT ‘20), Astro(DSN ‘20)…)

• Utilize consistent broadcast to forgo consensus

Consensus-less Blockchain
1. Motivation



• UTXO Model

• Single writer model

• Owner만 수정 가능

• Move의 Owned Object

FastPay
1. Motivation

• Key Concept

• Consensus 대신 Owner가 Tx ordering

• Tx 실행 조건: 2f + 1 validator signature 수집 (cert)

• 더블스펜딩 시도 -> 자산 잠금



1. Limited to asset transfers

• Account model에서의 자산은 대부분 shared object 

• Shared object: 여러 당사자가 접근 및 소유하는 대상

• Smart Contract

• Multi-owned object

• Multi-writer

• Shared object의 경우 실행 순서에 따라 결과값이 달라질 수 있음

• 당사자끼리의 Sequence Coordination이 어려움

• 대부분의 블록체인이 이 문제를 해결하기 위해 consensus라는 제 3의 sequencing mechanism을 두는 것

2. Do not support state checkpoints

3. Equivocations lock the assets forever

Problems in Consensus-less Blockchain
1. Motivation



1. Limited to asset transfers

2. Do not support state checkpoints

• 새로운 validator의 bootstrapping(sync)에 필요

• Block header, transaction hashes …

3. Equivocations lock the assets forever

Problems in Consensus-less Blockchain
1. Motivation



1. Limited to asset transfers

2. Do not support state checkpoints

3. Equivocations lock the assets forever (Freeze)

• 유저가 상충하는 요청을 보낼 경우 자산이 영원히 잠김

• Lock이 걸려있는 자산에 write를 요청하는 경우

• ex) Coin A를 사용하기로 약속(Lock)한 시점에 coin A를 사용하는 또 다른 요청을 보내는 경우

Problems in Consensus-less Blockchain
1. Motivation



• Latency & complexity

• Redundancy

• Consensus가 필요하지 않은 tx조차 consensus를 거치게 설계

• Consensus가 필요하지 않은 tx == Owned Obeject에 대한 tx

• Fastpay처럼 User가 직접 ordering 가능

Consensus-based Blockchain
1. Motivation



Combining Fast Path + Consensus Path
1. Motivation

Tx to Owned Object

Tx to Shared Object

System

Consensus-less
(FastPay)

Consensus-based
(Bullshark/Mysticeti)

Fast Path

Consensus Path



1. First smart contract system combining consensus-less mode and consensus-based mode

2. Support checkpointing in consensus-less blockchain

3. Forgive equivocation during reconfiguration process

4. Provide a production-grade evaluation of the system

Contribution
2. Contribution



Move language 3. Architecture

• UTXO 모델

• Owned Object

• Account-based 모델

• Shared Object

100 BTC
Owner: Alice

100 BTC
Owner: Bob

Alice: 100 DAI
Bob: 0 DAI

Alice: 0 DAI
Bob: 100 DAI

Asset Transfer Tx

Asset Transfer Tx

Smart Contract Smart Contract

Consumed Created



Move language 3. Architecture

• Object Model

• Owned Object (Assets)

• Shared Object (Smart contracts)

• Combine UTXO model & Account based model

• Version ID

• Object ID

• Object Key: Version ID + Object ID

DAI Smart Contract

1. Alice: Mint 100 DAI
2. Mint 100 DAI

3. Transfer to Alice 100 DAI
Owner: Alice

100 DAI
Owner: Contract



Move language 3. Architecture

100 DAI
Owner: Alice

Transfer to Bob

20 DAI
Owner: Carol

Transfer to Bob

Write a: 10

Write b: a

Write a: 20

Parallelizable

Need Consensus

Irrelevant to the order

Result will be affected by the order



1. Client broadcasts its transaction to validators

System Architecture
3. Architecture



2. Validators perform validity checks and return the signed transaction to the client

• Prevalidation (No execution)

• Validators locally locks the input owned objects, using ObjKey (Atomic test_and_set)

• Already locked ObjKey is involved -> freeze the object for an epoch

System Architecture
3. Architecture



3. Client collects the responses from a N-f validators to form a transaction certificate

• Signature aggregation algorithm (e.g. BLS)

System Architecture
3. Architecture



4. Broadcasts the certificate to validators

• Check if the number of signers > N-f

• Transaction finality (The execution of transaction is irrevokable)

System Architecture
3. Architecture



5. Transaction with certificate involves owned object → Execute without consensus

• Skip ordering

System Architecture
3. Architecture



6. All certificates are forwarded to the consensus protocol

• DAG-based Consensus (Blackbox)

• Input: All certificates (Shared object + Owned object)

• Output: Total order of certificates (Owned object cert first)

System Architecture
3. Architecture



7. Validators execute transactions containing shared objects

• Owned objects: Already executed by fast path

• Settlement finality (The result of execution is irrevocable)

System Architecture
3. Architecture



8. Client can collect N-f execution results and make effect certificate

• Proof of settlement

System Architecture
3. Architecture



9. Create checkpoint based on the commit

System Architecture
3. Architecture



• Transaction Finality

• 트랜잭션의 실행이 final

• 정직한 validator가 에포크 내에 트랜잭션을 실행할 것임이 보장됨

• Settlement Finality

• 트랜잭션의 실행 결과가 final

• 트랜잭션의 실행 결과를 subsequent transaction이 사용 가능

• Fast Path

• Ordering을 우회하여 차이가 없음

• UX

Two Types of Finality (Finality: irrevocable and unconditional)
3. Architecture

Transaction finality Settlement finality



System Architecture
3. Architecture



System Architecture
3. Architecture



• Like the blocks of a traditional blockchain

• Executed tx digests

• Tx order

• Signature of 2/3 committee

Checkpoint
3. Architecture



• Periodically validators pick a consensus commit to use as a checkpoint

• Current implementation: checkpoint per commit

• 모든 certificate(owned + shared)에 대한 sequencing을 진행하기 때문에 가능

Checkpoint
3. Architecture



• Between epochs, when the current committee is replaced by a new committeee

1. Validators stop signing new transactions or lock objects

2. When all certificates executed locally are checkpointed, validator votes to close the epoch

3. If >2/3 validator vote, the epoch ends

• All freezes caused by equivocation will be dropped

Reconfiguration
3. Architecture



• Forked FastPay, Narwhal(Mempool), Bullshark(Consensus)

• RocksDB

• QUIC

• Production level

• Sui mainnet

• 107 geo-distributed validators

• 3.1 million certificate per day

Implementation
4. Implementation



• AWS m5d.8xlarge instances

• 10Gbps bandwidth

• 2.5GHz 32 virtual CPUs (16 physical core)

• 128GB memory

• Ubuntu 22.04

• Commodity servers

• 13 different AWS regions(Virginia, Oregon, Canada, Frankfurt, Ireland, London, Paris, Stockholm, Mumbai, Singapore, Sydney, Tokyo, Seoul)

Experiment Setup
4. Implementation



• 350 tx/s for 10 minutes

• Latency : Settlement finality – Tx submission time

• Throughput : The number of effect certificates

• Common Case(No Fault) / Faults

• Baseline: Bullshark

• Extended version

• Sui lutris without FastPay

• Tx: payment + contract call

Experiment Setup
5. Evaluation



Benchmark with Common Case
5. Evaluation

• Sub-second latency

• X6 improvement

• Better Throughput

• Regardless of committee size



• PTB: 트랜잭션 번들

• Owned PTB : Shared PTB == 60: 40

• 최대 150,000 ops/s

• 1500 PTB

Benchmark with Common Case
5. Evaluation



• 최대 15배 latency

• Lutris: 0.5 seconds, 4000 cert/s

• Bullshark

• 1 faulty node: 5 seconds, 3500 cert/s

• 3 faulty nodes: 7.5 seconds, 3000 cert/s

Benchmark with Faults
5. Evaluation



Benchmark with Faults
5. Evaluation

No fault 1 fault 2 faults 3 faults Recover


	Slide 1: Lutris: A Blockchain Combining Broadcast and Consensus CCS 24
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37

