

Lutris: A Blockchain Combining Broadcast and Consensus

CCS 24

Sam Blackshear sam@mystenlabs.com Mysten Labs Palo Alto, USA

Anastasios Kichidis tasos@mystenlabs.com Mysten Labs London, UK

Mark Logan mark@mystenlabs.com Mysten Labs Palo Alto, USA

Alberto Sonnino alberto@mystenlabs.com Mysten Labs, UCL London, UK Andrey Chursin andrey@mystenlabs.com Mysten Labs Palo Alto, USA

Lefteris Kokoris-Kogias lefteris@mystenlabs.com Mysten Labs, IST Austria Athens, Greece

Ashok Menon ashok@mystenlabs.com Mysten Labs London, UK

Brandon Williams brandon@mystenlabs.com Mysten Labs Palo Alto, USA George Danezis george@mystenlabs.com Mysten Labs, UCL London, UK

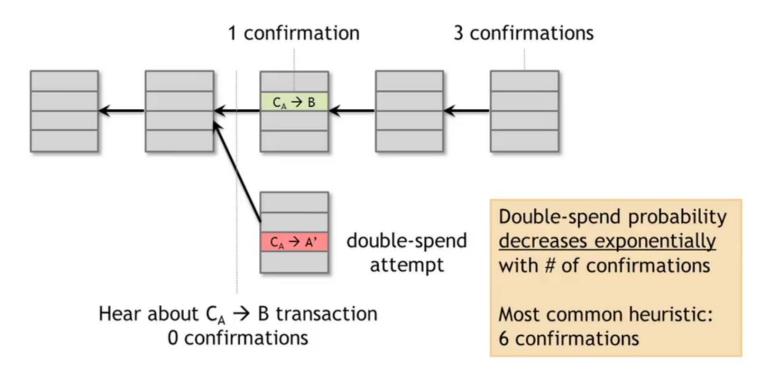
Xun Li xun@mystenlabs.com Mysten Labs Palo Alto, USA

Todd Nowacki tmn@mystenlabs.com Mysten Labs Palo Alto, USA

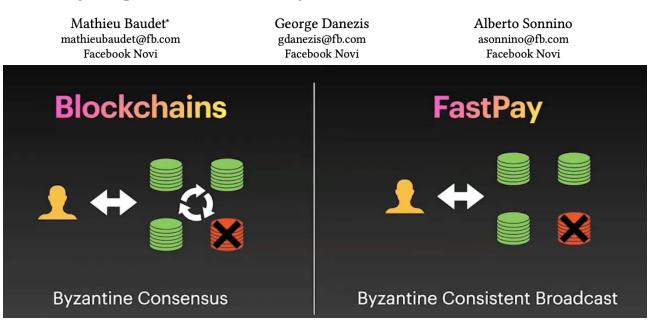
Lu Zhang lu@mystenlabs.com Mysten Labs Palo Alto, USA

2024. 11. 25 서울대 분산시스템연구실 석사과정 문보설

Mysten Labs



- Zef: Low-latency, Scalable, Private Payments
- Twins: BFT Systems Made Robust (OPODIS '21)
- SybilQuorum: Open Distributed Ledgers Through Trust Networks
- Narwhal and Tusk: A DAG-based Mempool and Efficient BFT Consensus (EuroSys '22)
- HammerHead: Score-based Dynamic Leader Selection (ICDCS '24)
- FastPay: High-Performance Byzantine Fault Tolerant Settlement (AFT '20)
- Bullshark: DAG BFT Protocols Made Practical
- Be Aware of Your Leaders (FC '22)
- zkLogin: Privacy-Preserving Blockchain Authentication with Existing Credentials
- Sui Lutris: A Blockchain Combining Broadcast and Consensus (CCS '24)
- Mysticeti: Reaching the Limits of Latency with Uncertified DAGs (NDSS '25)
- Mahi-Mahi: Low-Latency Asynchronous BFT DAG-Based Consensus



Consensus-less Blockchain

- Consensus-less blockchain (Zef(WPES '23), FastPay(AFT '20), Astro(DSN '20)...)
 - Utilize **consistent broadcast** to forgo consensus

FastPay: High-Performance Byzantine Fault Tolerant Settlement

FastPay

- UTXO Model
 - Single writer model
 - Owner만 수정 가능
 - Move의 Owned Object

- Key Concept
 - Consensus 대신 Owner가 Tx ordering
 - Tx 실행 조건: 2f + 1 validator signature 수집 (cert)
 - 더블스펜딩 시도 -> 자산 잠금

		 2. verify							
	1. transfer order	1							
1	3. signed transfer order]							
sender	4. confirmation order	•							
		7. update							
5. confirmation order									
	recipient								

1. Limited to asset transfers

- Account model에서의 자산은 대부분 shared object
- Shared object: 여러 당사자가 접근 및 소유하는 대상
 - Smart Contract
 - Multi-owned object
 - Multi-writer
- Shared object의 경우 실행 순서에 따라 결과값이 달라질 수 있음
- 당사자끼리의 Sequence Coordination이 어려움
 - 대부분의 블록체인이 이 문제를 해결하기 위해 consensus라는 제 3의 sequencing mechanism을 두는 것
- 2. Do not support state checkpoints
- 3. Equivocations lock the assets forever

- 1. Limited to asset transfers
- 2. Do not support state checkpoints
 - 새로운 validator의 bootstrapping(sync)에 필요
 - Block header, transaction hashes ...
- 3. Equivocations lock the assets forever

- 1. Limited to asset transfers
- 2. Do not support state checkpoints
- 3. Equivocations lock the assets forever (Freeze)
 - 유저가 상충하는 요청을 보낼 경우 자산이 영원히 잠김
 - Lock이 걸려있는 자산에 write를 요청하는 경우
 - ex) Coin A를 사용하기로 약속(Lock)한 시점에 coin A를 사용하는 또 다른 요청을 보내는 경우

- Latency & complexity
- Redundancy
 - Consensus가 필요하지 않은 tx조차 consensus를 거치게 설계
 - Consensus가 필요하지 않은 tx == Owned Obeject에 대한 tx
 - Fastpay처럼 User가 직접 ordering 가능

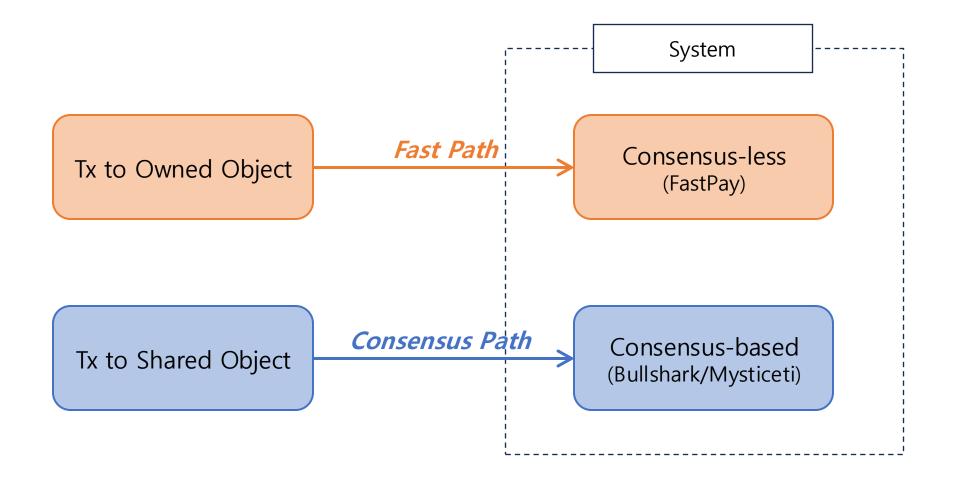
Bullshark: DAG BFT Protocols Made Practical

Alexander Spiegelman sasha.spiegelman@gmail.com Aptos

> Alberto Sonnino alberto@sonnino.com Mysten Labs

Neil Giridharan giridhn@berkeley.edu University of California, Berkeley

Lefteris Kokoris-Kogias Lefteris2k@gmail.com IST Austria


MYSTICETI: Reaching the Latency Limits with Uncertified DAGs

Kushal Babel^{*†}, Andrey Chursin[‡], George Danezis^{‡§}, Anastasios Kichidis[‡], Lefteris Kokoris-Kogias^{‡¶}, Arun Koshy[‡], Alberto Sonnino^{‡§}, Mingwei Tian[‡]

*Cornell Tech, $^{\dagger}IC3,\,^{\ddagger}Mysten$ Labs, $^{\$}University$ College London (UCL), \PIST Austria

1. Motivation

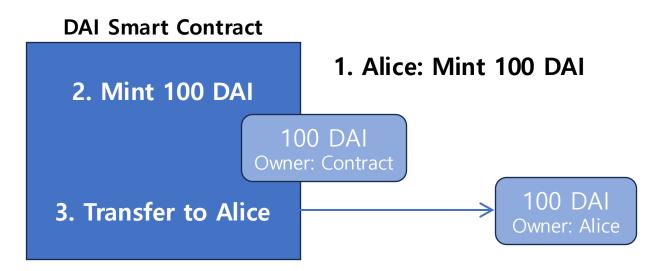
Contribution

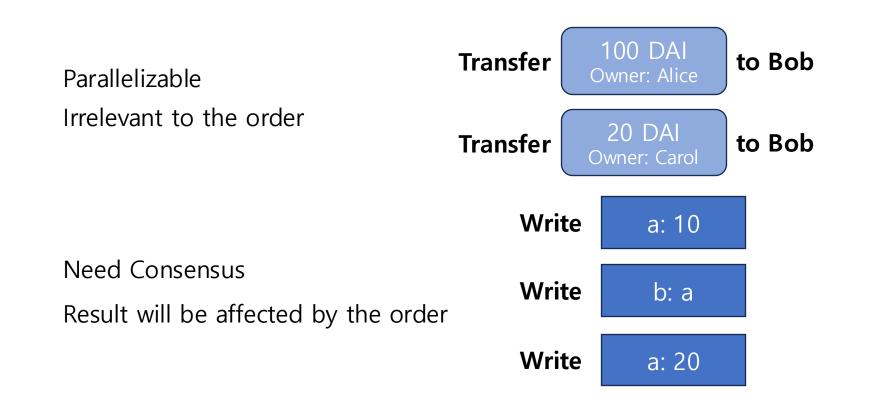
- 1. First smart contract system combining consensus-less mode and consensus-based mode
- 2. Support checkpointing in consensus-less blockchain
- 3. Forgive equivocation during reconfiguration process
- 4. Provide a production-grade evaluation of the system

Move language

3. Architecture

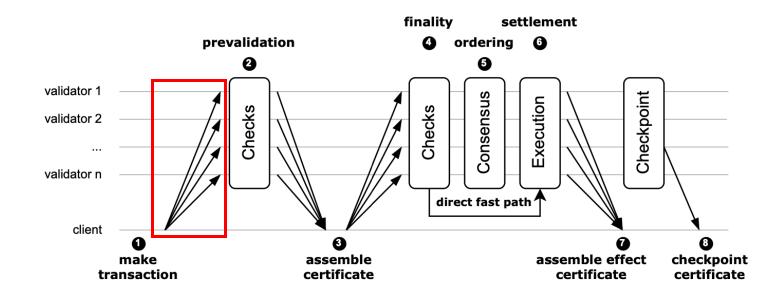
- UTXO 모델
 - Owned Object
- Account-based 모델
 - Shared Object



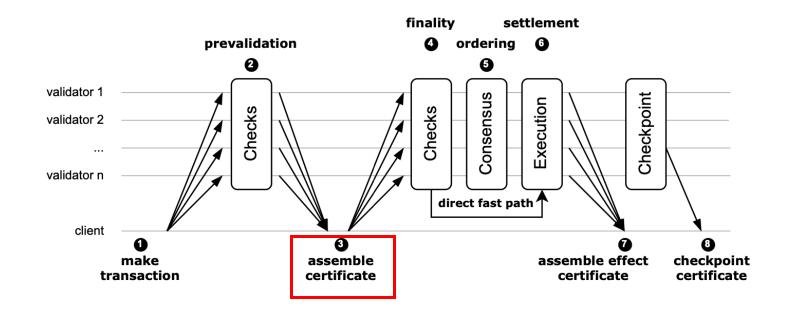


- Object Model
 - Owned Object (Assets)
 - Shared Object (Smart contracts)
- Combine UTXO model & Account based model

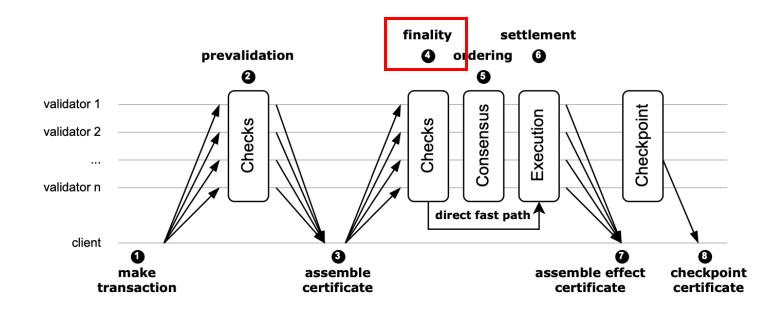
- Version ID
- Object ID
- Object Key: Version ID + Object ID



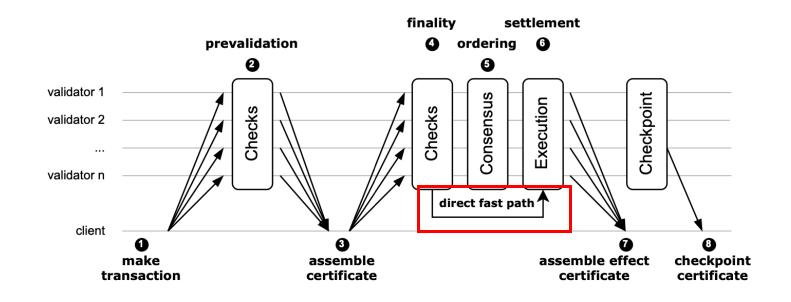
1. Client broadcasts its transaction to validators



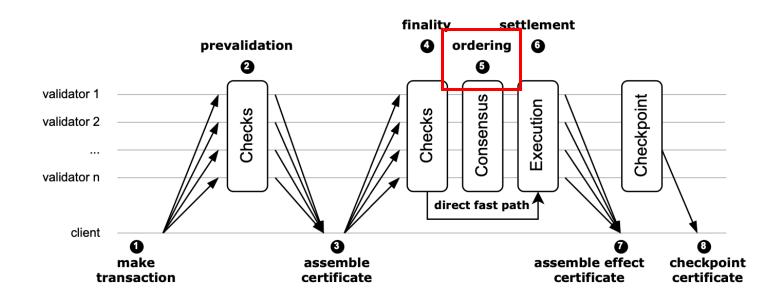
- 2. Validators perform validity checks and return the signed transaction to the client
 - Prevalidation (No execution)
 - Validators locally locks the input owned objects, using ObjKey (Atomic test_and_set)
 - Already locked ObjKey is involved -> freeze the object for an epoch



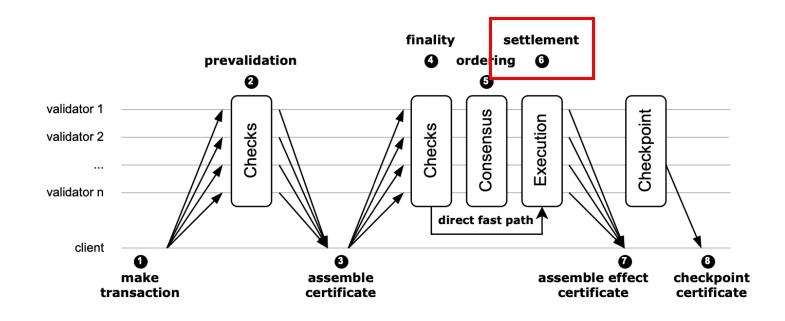
- 3. Architecture
- 3. Client collects the responses from a *N*-*f* validators to form a **transaction certificate**
 - Signature aggregation algorithm (e.g. BLS)

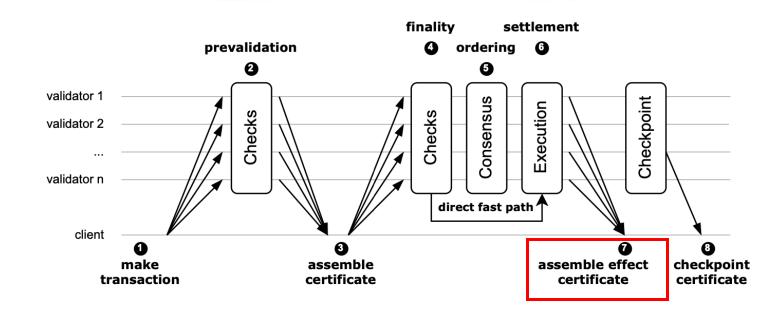


- 4. Broadcasts the certificate to validators
 - Check if the number of signers > *N*-*f*
 - Transaction finality (The execution of transaction is irrevokable)

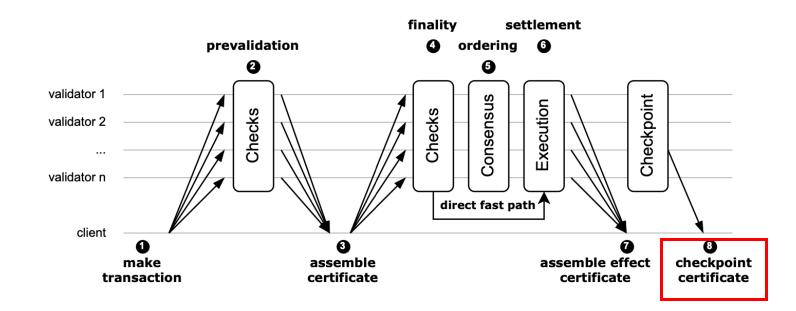


- 5. Transaction with certificate involves owned object \rightarrow Execute without consensus
 - Skip ordering

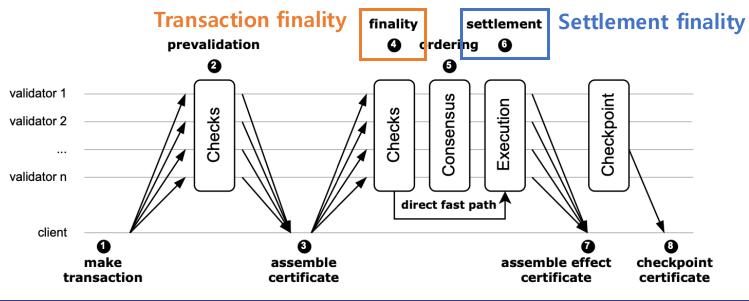

- 6. All certificates are forwarded to the consensus protocol
 - DAG-based Consensus (Blackbox)
 - Input: All certificates (Shared object + Owned object)
 - Output: Total order of certificates (Owned object cert first)

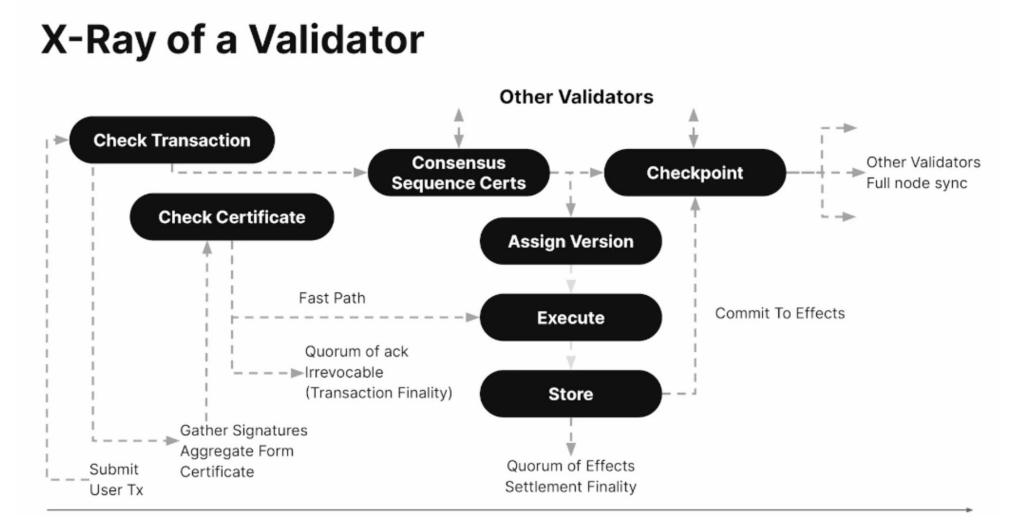

7.

- Validators execute transactions containing shared objects
- Owned objects: Already executed by fast path
- Settlement finality (The result of execution is irrevocable)

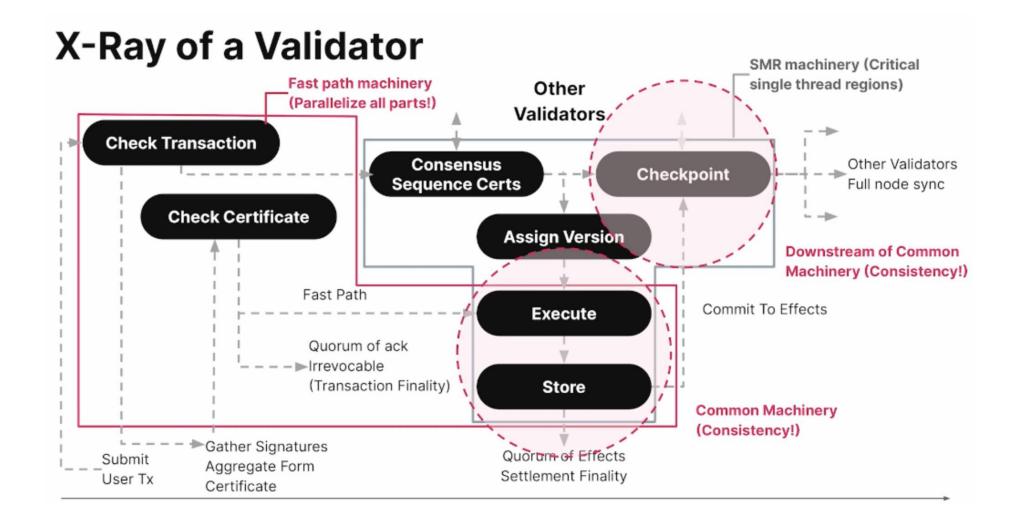


- 8. Client can collect N-f execution results and make effect certificate
 - Proof of settlement


9. Create checkpoint based on the commit



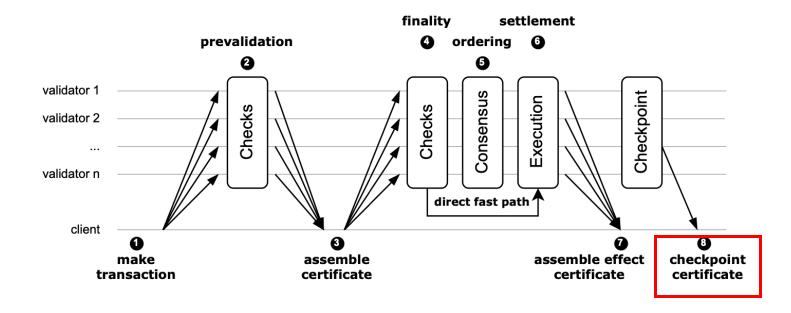
Two Types of Finality (Finality: irrevocable and unconditional)


- Transaction Finality
 - 트랜잭션의 실행이 final
 - 정직한 validator가 에포크 내에 트랜잭션을 실행할 것임이 보장됨
- Settlement Finality
 - 트랜잭션의 실행 결과가 final
 - 트랜잭션의 실행 결과를 subsequent transaction이 사용 가능
- Fast Path
 - Ordering을 우회하여 차이가 없음
- UX

Checkpoint

3. Architecture

- Like the blocks of a traditional blockchain
 - Executed tx digests
 - Tx order
 - Signature of 2/3 committee


y suiscan Home	Blockchain Apps	DeFi Coins NFTs Analytics	More Q Sea	arch anything o	on Sui				
Checkpoints					{API}				
78,414,891 found Showing last 10,000		1 2 3 4 5 500 >	, Checkpoints Digest: 9t4dQjKYrPintkApvJtfyJ7mmaT8nJ2XSF6ynvVektpz 🗇						
(i) Sequence Number	Epoch	(i) Digest							
82,174,771	588	9t4dQjKYrPinSF6ynvVektpz□	← 82,174,769 8	2,174,770	Sequence Number 82,174,771		<i>→</i>	Timestamp	21.11.2024 UTC 09:15 1 h ago
82,174,770	588	39H7jgyAkvT2···MUYCVFAvcHpj⊡			02,174,771				
82,174,769	588	CQAc77LAGBdj•••BRLyLg3Z7GPP 🗍	Encoh	588			Signature	i]CY0vV+b6VWpMa6/&	•eRTiwy/eMAENRic80S1 🗇
82,174,768	588	JDLLCKEeJz6v・・・Rgks3pFouBA6 同	Epoch 588			Signature ilCXOvYth6YWnMq6/A•••e8Tjwv4eMAEN8jc8CS1 🗇			
			Checkpoint Transaction Blocks () 27 Computation Cost () 6,192.214979608 sui Non Refundable Storage Fee () 911.373035796 sui		Network Total Transaction	Blocks 2,661,483,430			
					Storage Cost (i)	91,940.9600392 sui			
					Storage Rebate (i	ate () 90,225.930543804 sui			

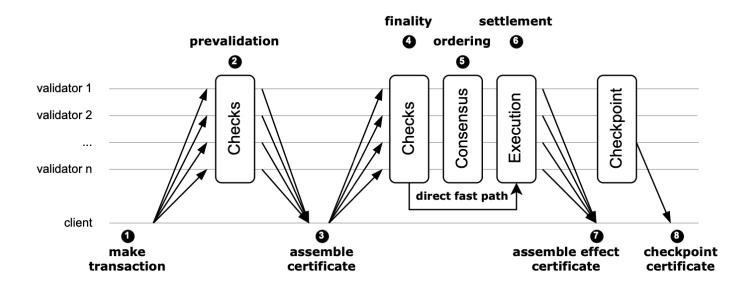
Transaction Blocks

Checkpoint

- Periodically validators pick a consensus **commit** to use as a checkpoint
 - Current implementation: checkpoint per commit
 - 모든 certificate(owned + shared)에 대한 sequencing을 진행하기 때문에 가능

- Between epochs, when the current committee is replaced by a new committeee
- 1. Validators stop signing new transactions or lock objects
- 2. When all certificates executed locally are checkpointed, validator votes to close the epoch
- 3. If >2/3 validator vote, the epoch ends
- All freezes caused by equivocation will be dropped

Implementation


- Forked FastPay, Narwhal(Mempool), Bullshark(Consensus)
- RocksDB
- QUIC
- Production level
 - Sui mainnet
 - 107 geo-distributed validators
 - 3.1 million certificate per day

- AWS m5d.8xlarge instances
 - 10Gbps bandwidth
 - 2.5GHz 32 virtual CPUs (16 physical core)
 - 128GB memory
 - Ubuntu 22.04
- Commodity servers
- 13 different AWS regions(Virginia, Oregon, Canada, Frankfurt, Ireland, London, Paris, Stockholm, Mumbai, Singapore, Sydney, Tokyo, Seoul)

- 350 tx/s for 10 minutes
- Latency : Settlement finality Tx submission time
- Throughput : The number of effect certificates
- Common Case(No Fault) / Faults
- Baseline: Bullshark
 - Extended version
 - Sui lutris without FastPay
- Tx: payment + contract call

Benchmark with Common Case

- Sub-second latency
 - X6 improvement
- Better Throughput
 - Regardless of committee size

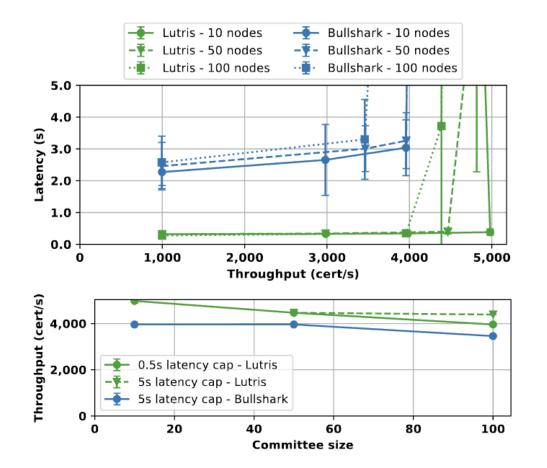


Figure 4: SUI LUTRIS and Bullshark WAN latency-throughput with 10, 50, and 100 validators (no faults).

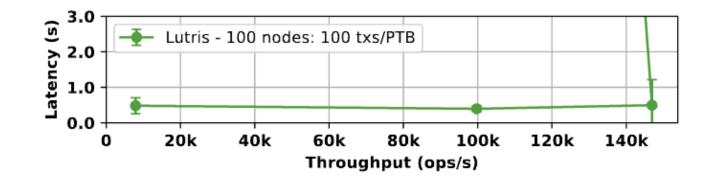


Figure 5: SUI LUTRIS latency-throughput with bundles of 100 transactions per programmable transaction block (PTB); 100 validators, no faults.

- PTB: 트랜잭션 번들
- Owned PTB : Shared PTB == 60: 40
- 최대 150,000 ops/s
 - 1500 PTB

Benchmark with Faults

- 최대 15배 latency
 - Lutris: 0.5 seconds, 4000 cert/s
 - Bullshark
 - 1 faulty node: 5 seconds, 3500 cert/s
 - 3 faulty nodes: 7.5 seconds, 3000 cert/s

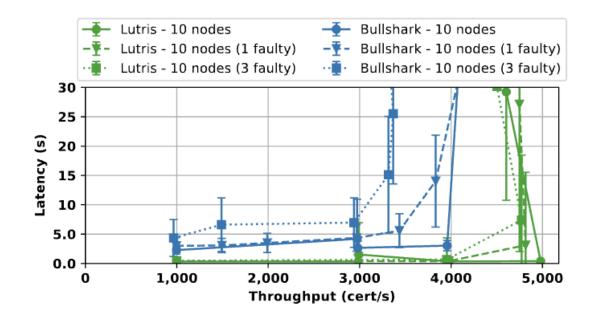


Figure 6: SUI LUTRIS and Bullshark WAN latency-throughput with 20 validators (1, 3, and 6 faults).

Benchmark with Faults

5. Evaluation

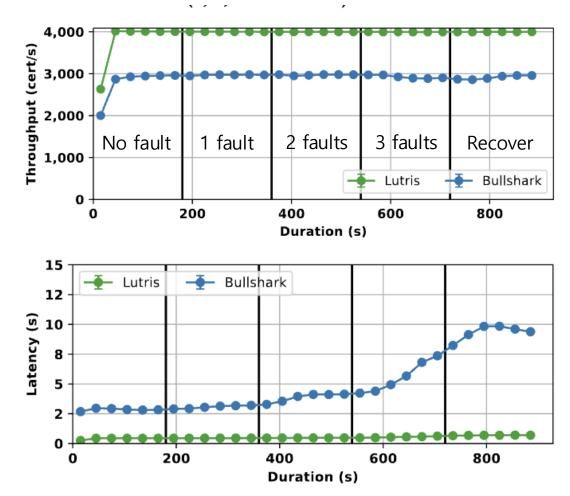


Figure 7: Performance of a 10-validators committee when up to 3 validators crash and recover.

