
Max Attestation Matters

: Making Honest Parties Lose Their Incentives in Ethereum PoS

2024. 10. 16

서울대 분산시스템연구실

석사과정 문보설

Security 2024



• Ethereum incentive system

• Attestation Incentives

• Rewards

• Penalties

• Block Rewards

• Sync Committee Incentives

Motivation



• Attestation 

• Source 체크포인트와 target 체크포인트의 연결성(link)에 대한 투표

• Last Justified Checkpoint

• 마지막으로 justify된 체크포인트 블록

• 마지막으로 2N/3 attestation을 받은 블록

• Attestation의 source

• …

Background



• Idea: LJ might change in the middle of an epoch

• Case 1 ) LJ is updated at the first block

• Normal case

• Assume LJ == cp at epoch e

Attack overview



• Idea: LJ might change in the middle of an epoch

• Case 1 ) LJ is updated at the first block

• Normal case

• Assume LJ == cp at epoch e

Attack overview



• Idea: LJ might change in the middle of an epoch

• Case 1 ) LJ is updated at the first block

• Normal case

• Assume LJ == cp at epoch e

Attack overview

(cp, 0) X 2N/3



• Idea: LJ might change in the middle of an epoch

• Case 1 ) LJ is updated at the first block

• Normal case

• Assume LJ == cp at epoch e

Attack overview

(cp, 0) X 2N/3



• Idea: LJ might change in the middle of an epoch

• Case 1 ) LJ is updated at the first block

• Normal case

• Assume LJ == cp at epoch e

Attack overview

(cp, 0) X 2N/3 (0, 32)



• Idea: LJ might change in the middle of an epoch

• Case 2 ) LJ is updated before preparing an attestation

• Assume LJ == cp at epoch e

• No blocks has been received in epoch e+1

Attack overview



• Idea: LJ might change in the middle of an epoch

• Case 2 ) LJ is updated before preparing an attestation

• Assume LJ == cp at epoch e

• No blocks has been received in epoch e+1

Attack overview

(cp, 0) X 2N/3



• Idea: LJ might change in the middle of an epoch

• Case 2 ) LJ is updated before preparing an attestation

• Assume LJ == cp at epoch e

• No blocks has been received in epoch e+1

Attack overview

(cp, 0) X 2N/3



• Idea: LJ might change in the middle of an epoch

• Case 2 ) LJ is updated before preparing an attestation

• Assume LJ == cp at epoch e

• No blocks has been received in epoch e+1

Attack overview

(cp, 0) X 2N/3
LJ = 0

Attest: (0, 31)



• Idea: LJ might change in the middle of an epoch

• Case 3 ) LJ is updated in the middle of an epoch

• Assume LJ == cp at epoch e

• Blocks from previous epoch are withheld / delayed

Attack overview



• Idea: LJ might change in the middle of an epoch

• Case 3 ) LJ is updated in the middle of an epoch

• Assume LJ == cp at epoch e

• Blocks from previous epoch are withheld / delayed

Attack overview



• Idea: LJ might change in the middle of an epoch

• Case 3 ) LJ is updated in the middle of an epoch

• Assume LJ == cp at epoch e

• Blocks from previous epoch are withheld / delayed

Attack overview

Attest: (cp, 16)
(LJ = cp)



• Idea: LJ might change in the middle of an epoch

• Case 3 ) LJ is updated in the middle of an epoch

• Assume LJ == cp at epoch e

• Blocks from previous epoch are withheld / delayed

Attack overview



• Idea: LJ might change in the middle of an epoch

• Case 3 ) LJ is updated in the middle of an epoch

• Assume LJ == cp at epoch e

• Blocks from previous epoch are withheld / delayed

Attack overview

(cp, 0) X 2N/3



• Idea: LJ might change in the middle of an epoch

• Case 3 ) LJ is updated in the middle of an epoch

• Assume LJ == cp at epoch e

• Blocks from previous epoch are withheld / delayed

Attack overview

(cp, 0) X 2N/3
LJ = 0



• Idea: LJ might change in the middle of an epoch

• Case 3 ) LJ is updated in the middle of an epoch

• Assume LJ == cp at epoch e

• Blocks from previous epoch are withheld / delayed

Attack overview

(cp, 0) X 2N/3
LJ = 0

Attest: (cp, 16)
(LJ = cp)



• Idea: LJ might change in the middle of an epoch

• Case 3 ) LJ is updated in the middle of an epoch

• Assume LJ == cp at epoch e

• Blocks from previous epoch are withheld / delayed

Attack overview

(cp, 0) X 2N/3
LJ = 0

Attest: (cp, 16)
(LJ = cp)

Outdated



• Idea: LJ might change in the middle of an epoch

• Case 3 ) LJ is updated in the middle of an epoch

• Assume LJ == cp at epoch e

• Blocks from previous epoch are withheld / delayed

Attack overview

(cp, 0) X 2N/3

(cp, 16)
J(c1) = cp

LJ = 0

X Prune => penalty on attestors

Attest: (cp, 16)
(LJ = cp)

Outdated



• Goal: Make (N-f)/32 attestations to be discarded

• 1) Attacker waits for an opportune epoch

• 해당 에포크의 첫 슬롯의 제안자가 되는 에포크

• 2) Attacker creates and withholds its block b_i

Warm up attack



• Goal: Make (N-f)/32 attestations to be discarded

• 1) Attacker waits for an opportune epoch

• 해당 에포크의 첫 슬롯의 제안자가 되는 에포크

• 2) Attacker creates and withholds its block b_i

• Attestor들이 LJ를 업데이트 한 후, (0, 31)에 attest

Warm up attack

<= Case 2!!



• Goal: Make (N-f)/32 attestations to be discarded

• 1) Attacker waits for an opportune epoch

• 해당 에포크의 첫 슬롯의 제안자가 되는 에포크

• 2) Attacker creates and withholds its block b_i

• Attestor들이 LJ를 cp{e-1}로 업데이트 한 후, (cp{e-1}, b)에 attest

Warm up attack



• Goal: Make (N-f)/32 validators to be penalized

• 1) Attacker waits for an opportune epoch

• 해당 에포크의 첫 슬롯의 제안자가 되는 에포크

• 2) Attacker creates and withholds its block b_i

• Attestor들이 LJ를 cp{e-1}로 업데이트 한 후, (cp{e-1}, b)에 attest

• 3) At the end of slot, the attacker sends b_i to all validators

• All validators update their target to b_i

Warm up attack



• Goal: Make (N-f)/32 validators to be penalized

• 1) Attacker waits for an opportune epoch

• 해당 에포크의 첫 슬롯의 제안자가 되는 에포크

• 2) Attacker creates and withholds its block b_i

• Attestor들이 LJ를 cp{e-1}로 업데이트 한 후, (cp{e-1}, b)에 attest

• 3) At the end of slot, the attacker sends b_i to all validators

• All validators update their target to b_i

• 4) After slot t, any attestations created by honest attestors in slot t will be discarded

• (N-f)/32 attestations

Warm up attack



• Idea

• 1) By discarding (N-f)/32 votes through the warm-up attack, it prevents gathering 2N/3 proofs by 

the end of the epoch.

• 2) Due to the LJ value maintained by 1), it updates LJ in the middle of the epoch (Case 3), causing 

the honest branch to be pruned.

Staircase Attack



• 1) Warm-up Attack

• Slot t: Discard (N-f)/32 attestations using Warm-up attack

Staircase Attack



• 2) Byzantine validators hide their attestations/last block

• (1) All Byzantine validators : Withhold attestations

• (2) Last Byzantine proposer (e.g. slot t_j) : Withhold b_j

Staircase Attack



• 3) At the end of epoch e, LJ remains as cp{e-1}

• # of attestations for (cp_{e-1}, b_i) = 31(N-f)/32 < 2N/3 (f = N/3)

Staircase Attack



• 4) Byzantine validators withheld attestations for (b_i, b_j)

• While honest validators vote for (cp_{e-1}, b_i)

• Byzantine proposer의 차례(t_adv)가 될 때까지 반복 (the first period)

Staircase Attack



• 4) Release block b_j and attestations at the second period

• Byzantine proposer의 차례(t_adv)가 오면 b_j 및 숨겨진 attestation들을 공개

• LJ를 b_i로 만들고 honset branch를 pruning

• t_j-t-1 > 2/3 인 상황에서 성립

• Pr[t_j-t-1 > 2/3] >= 98.84%

Staircase Attack



• Attacker can repeat the attack in every epoch

Staircase Attack



• Prysm Capella(Golang)

• 1000 validators connected by LAN

• F: # of Byzantine validators

• Incentive Loss Rate

• (fair share – incentive) / fair share * 100

Evaluation



• An adversary that controls 29.6% stake can make all honest validators lose their incentive

• Larger MAX_ATTESTATIONS make higher incentive loss

Conclusion


	Slide 1: Max Attestation Matters : Making Honest Parties Lose Their Incentives in Ethereum PoS
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35

