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• Ethereum incentive system

• Attestation Incentives

• Rewards

• Penalties

• Block Rewards

• Sync Committee Incentives

Motivation



• Attestation 

• Source 체크포인트와 target 체크포인트의 연결성(link)에 대한 투표

• Last Justified Checkpoint

• 마지막으로 justify된 체크포인트 블록

• 마지막으로 2N/3 attestation을 받은 블록

• Attestation의 source

• …

Background
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• Case 1 ) LJ is updated at the first block

• Normal case

• Assume LJ == cp at epoch e
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• Idea: LJ might change in the middle of an epoch

• Case 1 ) LJ is updated at the first block

• Normal case

• Assume LJ == cp at epoch e

Attack overview

(cp, 0) X 2N/3 (0, 32)
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• Idea: LJ might change in the middle of an epoch

• Case 2 ) LJ is updated before preparing an attestation

• Assume LJ == cp at epoch e

• No blocks has been received in epoch e+1

Attack overview

(cp, 0) X 2N/3
LJ = 0

Attest: (0, 31)
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• Idea: LJ might change in the middle of an epoch

• Case 3 ) LJ is updated in the middle of an epoch

• Assume LJ == cp at epoch e

• Blocks from previous epoch are withheld / delayed

Attack overview

(cp, 0) X 2N/3

(cp, 16)
J(c1) = cp

LJ = 0

X Prune => penalty on attestors

Attest: (cp, 16)
(LJ = cp)

Outdated



• Goal: Make (N-f)/32 attestations to be discarded

• 1) Attacker waits for an opportune epoch

• 해당 에포크의 첫 슬롯의 제안자가 되는 에포크

• 2) Attacker creates and withholds its block b_i

Warm up attack
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• Goal: Make (N-f)/32 validators to be penalized

• 1) Attacker waits for an opportune epoch

• 해당 에포크의 첫 슬롯의 제안자가 되는 에포크

• 2) Attacker creates and withholds its block b_i

• Attestor들이 LJ를 cp{e-1}로 업데이트 한 후, (cp{e-1}, b)에 attest

• 3) At the end of slot, the attacker sends b_i to all validators

• All validators update their target to b_i

• 4) After slot t, any attestations created by honest attestors in slot t will be discarded

• (N-f)/32 attestations

Warm up attack



• Idea

• 1) By discarding (N-f)/32 votes through the warm-up attack, it prevents gathering 2N/3 proofs by 

the end of the epoch.

• 2) Due to the LJ value maintained by 1), it updates LJ in the middle of the epoch (Case 3), causing 

the honest branch to be pruned.

Staircase Attack



• 1) Warm-up Attack

• Slot t: Discard (N-f)/32 attestations using Warm-up attack

Staircase Attack



• 2) Byzantine validators hide their attestations/last block

• (1) All Byzantine validators : Withhold attestations

• (2) Last Byzantine proposer (e.g. slot t_j) : Withhold b_j

Staircase Attack



• 3) At the end of epoch e, LJ remains as cp{e-1}

• # of attestations for (cp_{e-1}, b_i) = 31(N-f)/32 < 2N/3 (f = N/3)

Staircase Attack



• 4) Byzantine validators withheld attestations for (b_i, b_j)

• While honest validators vote for (cp_{e-1}, b_i)

• Byzantine proposer의 차례(t_adv)가 될 때까지 반복 (the first period)

Staircase Attack



• 4) Release block b_j and attestations at the second period

• Byzantine proposer의 차례(t_adv)가 오면 b_j 및 숨겨진 attestation들을 공개

• LJ를 b_i로 만들고 honset branch를 pruning

• t_j-t-1 > 2/3 인 상황에서 성립

• Pr[t_j-t-1 > 2/3] >= 98.84%

Staircase Attack



• Attacker can repeat the attack in every epoch

Staircase Attack



• Prysm Capella(Golang)

• 1000 validators connected by LAN

• F: # of Byzantine validators

• Incentive Loss Rate

• (fair share – incentive) / fair share * 100

Evaluation



• An adversary that controls 29.6% stake can make all honest validators lose their incentive

• Larger MAX_ATTESTATIONS make higher incentive loss

Conclusion
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